Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(1): e0141521, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613806

RESUMO

Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in protecting healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids which overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis for developing therapies to prevent and treat human astrovirus gastroenteritis. IMPORTANCE Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block astrovirus infection. Here, we determined the crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind to two distinct sites on the capsid spike domain, however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Capsídeo/imunologia , Epitopos/imunologia , Mamastrovirus/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Epitopos/química , Interações Hospedeiro-Patógeno/imunologia , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Ligação Viral
2.
Viruses ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396308

RESUMO

Although human astroviruses (HAstVs) are important agents of gastroenteritis in young children, the studies aimed at characterizing their biology have been limited, in particular regarding their cell entry process. It has been shown that HAstV serotype 8 enters human cells by a classical clathrin-mediated endocytosis pathway; however, the cell receptor or other cell entry factors that may be relevant for an efficient viral infection are unknown. In this work we used a far-Western blotting approach to identify cellular proteins that interact with the recombinant capsid spike proteins of HAstV serotypes 1, 2, and 8, synthesized in Escherichia coli. We identified the 72 kDa protein disulfide isomerase A4 (PDIA4) as a binding partner for HAstV-1 and -8 spikes, but not for the HAstV-2 spike. In agreement with this observation, the PDI inhibitor 16F16 strongly blocked infection by HAstV serotypes 1 and 8, but not serotype 2. RNA interference of PDIA4 expression selectively blocked HAstV-8 infectivity. We also showed that the PDI activity does not affect virus binding or internalization but is required for uncoating of the viral genome.


Assuntos
Infecções por Astroviridae/metabolismo , Infecções por Astroviridae/virologia , Interações Hospedeiro-Patógeno , Mamastrovirus/fisiologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Desenvelopamento do Vírus , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Mamastrovirus/efeitos dos fármacos , Ligação Proteica , Internalização do Vírus
3.
Virus Res ; 263: 27-33, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30639190

RESUMO

Numerous host factors are required for the efficient replication of rotavirus, including the activation and inactivation of several cell signaling pathways. One of the cellular structures that are reorganized during rotavirus infection is the actin cytoskeleton. In this work, we report that the dynamics of the actin microfilaments are important at different stages of the virus life cycle, specifically, during virus internalization and viral RNA synthesis at 6 h post-infection. Our results show that the actin-binding proteins alpha-actinin 4 and Diaph, as well as the Rho-family small GTPase Cdc42 are necessary for an efficient virus entry, while GTPase Rac1 is required for maximal viral RNA synthesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Interações Hospedeiro-Patógeno , RNA Viral/biossíntese , Rotavirus/fisiologia , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , Células Epiteliais/virologia , Macaca mulatta
4.
Virology ; 521: 58-61, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883775

RESUMO

Human astrovirus is an important etiological agent of acute gastroenteritis in young children. Despite advances in the characterization of the structure of the virion by cryo-electron microscopy and of capsid proteins by x-ray crystallography, the definition of the minimal polypeptide composition of infectious virus particles has been elusive. In this work we show that mature infectious particles are composed by only two proteins; VP34 that forms the core domain of the virus, and VP27 that constitutes the 30 dimeric spikes present on the virus surface. Our results also indicate that during the transition of immature (90 spikes) to mature (30 spikes) virus particles, that occur during trypsin activation, the viral protein VP25, that most likely forms the 60 spikes that are lost during maturation, detaches from the virus particle. This information is relevant to better understand the biology of virus entry and also for the efficient development of subunit vaccines.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Mamastrovirus/química , Peptídeos/química , Células CACO-2 , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Vírion , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...